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Abstract—Memory overcommitment enables cloud providers
to host more virtual machines on a single physical server,
exploiting spare CPU and I/O capacity when physical memory
becomes the bottleneck for virtual machine deployment. However,
overcommiting memory can also cause noticeable application
performance degradation. We present Ginkgo, a policy frame-
work for overcomitting memory in an informed and automated
fashion. By directly correlating application-level performance to
memory, Ginkgo automates the redistribution of scarce memory
across all virtual machines, satisfying performance and capacity
constraints. Ginkgo also achieves memory gains for traditionally
fixed-size Java applications by coordinating the redistribution of
available memory with the activities of the Java Virtual Machine
heap. When compared to a non-overcommited system, Ginkgo
runs the DayTrader 2.0 and SPECWeb 2009 benchmarks with
the same number of virtual machines while saving up to 73%
(50% omitting free space) of a physical server’s memory while
keeping application performance degradation within 7%.

I. INTRODUCTION

Cost reduction is a key benefit of cloud computing that

continuously attracts more users and applications into consol-

idated mega data-centers. Therefore, to keep pace with an ex-

plosively expanding business, cloud providers must minimize

infrastructure and operating costs through efficient, dynamic,

and automated resource management. When memory is the

primary bottleneck, one way to achieve this goal is through

overcommitment, reclaiming unused or duplicated memory to

pack more Virtual Machines (VMs) into a physical server.

In this work, we take an application-driven approach to

explore how memory can be shared effectively, especially as

CPU and I/O capacity increases rapidly due to multicore and

high-throughput interconnect technologies. Overcommitting

memory remains a significant technical challenge despite its

importance [1], [2], [3], [4], [5], [6], [7], [8], due to the fact

that applications should be able to perform as well as if each

VM had dedicated memory. Furthermore, other management

activities (like page caching and swapping) exhibit non-linear

relationships between memory and performance, such as when

the same memory page is cached or swapped by both the

guest operating system (OS) and the hypervisor. The hyper-

visor needs to distribute physical memory across the virtual

machines without causing dramatic application performance

degradation. Otherwise, cloud customers would notice they

get less resources than they paid for.

In this paper we present Ginkgo, an application-driven

memory overcommitment framework that allows cloud

providers to run more VMs on a single physical server. This

framework redistributes memory across VMs during runtime

so that (1) less memory is used overall and (2) application

performance is maintained within acceptable Service Levels.

This process is comprised of two stages, an off-line profiling

stage and a production stage. The profiling stage continu-

ously maintains a performance-to-memory correlation model

by sampling application metrics under a variety of memory

configurations and loads. We use this model at the production

stage to decide the least amount of memory required to provide

agreeable application performance.

The main contributions of this work are:

(1) The design and implementation of a hypervisor-

independent memory overcommitment framework that pro-

vides memory gains with minimal application penalties. (Sec-

tions II, III, and IV). Without even using page de-duplication,

Ginkgo saved up to 73% (50% omitting free space) of physical

memory with less than 7% of performance degradation.

(2) A mechanism to coordinate the heap size growth and

shrink of unmodified Java Virtual Machines (JVMs) with the

existing VM balloon driver for Java applications. (Section V).

(3) The evaluation of Ginkgo using the benchmarks Day-

Trader 2.0 (Websphere v7, DB2 v9) and SPECWeb 2009

(Apache), illustrating the non-linear relationship between

memory and performance. We demonstrate how this relation-

ship can be inferred and exploited for efficient overcommit-

ment. (Sections VI and VII).

II. THE GINKGO FRAMEWORK

Ginkgo is designed to grant cloud providers the ability to

dynamically redistribute memory among VMs while maintain-

ing application performance within acceptable service levels.

Our approach rests on the observation that depending on the

incoming load a VM can achieve the agreeable application

performance with less physical memory than it is currently

using. This observation implies that Ginkgo needs to identify

a memory-to-performance “sweet spot”, where “just the right

amount” of memory is given to reach a certain level of

application performance for the current incoming load.

Ginkgo is implemented as a closed control loop with

autonomic characteristics. For each VM, Ginkgo builds a

performance model by correlating regular samples of appli-

cation performance, memory usage, and submitted load. (In

this work, clients are capable to inform the submitted load, in

order to speed up the building of an accurate model.) Then,

this model is used to calculate how much memory each VM
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Fig. 1. A view of a sample usage of the Ginkgo framework, including its components

and one hypervisor, two Stacks, and three Tiers

needs (memory assignments), also taking into account specific

criteria supplied by the cloud provider (e.g., a minimum

performance level required by the Service Level Agreement or

SLA). Finally, these memory assignments are applied directly

to each VM and the process is repeated.

Application performance monitoring is used as the fulcrum

of Ginkgo’s memory assignment decisions. Because of this,

the framework is hypervisor-agnostic in the sense that it

only requires hypervisor support for dynamic VM memory

resizing (e.g. ballooning [3]), which is available in all modern

hypervisor architectures, including VMware ESX Server [3],

Xen [9], Hyper-V [10], and KVM [11]. For our prototype, we

use the KVM hypervisor on Red Hat Enterprise Linux 6 to

host the VMs.

We group cloud elements in the following categories, as

depicted in Figure 1:

1. Stacks: The logical grouping of VMs servicing client’s

requests (e.g., 1 WebSphere VM + 1 DB2 VM form a

DayTrader Stack);

2. Tiers: A key or tag that uniquely identifies the hardware

and software on a VM that is part of a Stack. Our

framework creates performance models on a per-Tier basis

to track divergence in hardware and software versions

which might spawn new models.

3. Workload Driver: The set of clients that generate a

stream of requests directed to a given Stack;

4. Hypervisors: The set of physical hosts that house one

or more provisioned Stacks;

The Ginkgo framework itself has different components

interacting with the aforementioned elements:

1. Collectors: threads that poll each Tier of a Stack for

performance data;

2. Correlator: analyzes the collected data and constructs a

set of models correlating observed application performance

to a given memory size and submitted load level;

3. Estimator: uses the Correlator’s generated models to

compute a set of feasible per-VM memory assignments that

optimize an objective function (e.g. maximum performance

or minimum memory usage);

4. Orchestrator: an actuator that establishes a connection

to a cloud hypervisor and applies the new memory assign-

ments through existing memory ballooning mechanisms;

The quality of the memory assignments from the Estimator

is highly contingent upon an accurate and extensive memory-

to-application performance correlation model. Before a pro-

duction hypervisor is enabled for overcommitment, Ginkgo

first does an initial phase of experimental profiling. In a

larger, production cloud, one could generate these models

dynamically by only ballooning free space and page cache

space as workload conditions change over a long period of

time. In this work, to explore the potential of fully populated

models for a wide range of memory sizes and produce an

optimal model, we generate them offline. In the future, a

“library” of such models could be maintained by the cloud

provider, with the appropriate model assigned to a new VM

at provisioning time. This online model selection could be

revised over a long period of time.

III. CORRELATING PERFORMANCE AND MEMORY

Ginkgo creates and maintains models to correlate between

performance and memory. The experiment space for these

models is populated by multiple memory sizes for each load

level, with a fixed number of VMs per hypervisor. We generate

models for each target application stack. For instance, the

DayTrader Stack is modeled by recording its performance

while submitting load levels up to 8 simultaneous request

streams and varying the memory sizes from 2 GB to 250

MB (in decrements of 32 MB). The entire Stack is submitted

to various load levels at each memory size for long periods

of time (at least an hour per memory size), with application

performance sampled at short intervals (30-60 seconds) -

producing hundreds to thousands of measurements.

Since the behavior patterns for individual Tiers in a Stack

have markedly different characteristics, we have defined three

types of Collectors:

1. Web Collectors: a wget operation that queries a small

loadable Apache module over HTTP. The module reports

the average time needed by the server to process URLs

(not including network delay);

2. DB Collectors: a query that uses the Java Database

Connectivity (JDBC) interface to obtain the number of

transactions completed within a certain time;

3. App Collectors: an XML-based wget parser (also over

HTTP) that extracts response times from an application

server. In the case of WebSphere, this XML comes from

the built-in Performance Monitoring Infrastructure (PMI).

As a concrete example, load submitted to the DayTrader

Stack results in two different models populated respectively

by two different Collectors. Client requests (i.e., load) always

arrive at the Stack through the topmost Tier (e.g., WebSphere

VM). We assume that increasing (or decreasing) the load

on the topmost Tier will likewise do the same on the other

Tiers. This architecture neither requires Tiers to be aware of

Ginkgo itself nor make any other Ginkgo-specific changes



for monitoring. As long as there is some method or interface

for periodically querying application performance, Collectors

can be independently invoked to provide performance values.

Enterprise applications typically already have such interfaces.

Collectors are also resource-agnostic, in the sense that the

same Collector can be used to monitor performance regardless

of which specific kind of resource (e.g., memory, CPU, I/O)

is most relevant for a given Tier.

With this data, the first step in the production of a correlation

model for each Tier is the summarization of the performance

samples obtained for each pair of submitted load level and

memory size. The Correlator currently employs two methods

for summarizing data. The first method produces weighted

moving averages, commonly used with values reported as

throughput measurements, such as those produced by the

DB Collector. The second method uses the 95
th percentile

function, which is useful for application performance values

reported as response times, which is the case for the Web

Collector.

Next, the Correlator takes each per-Tier model and under-

goes a non-linear regression. The curve-fitted tables of this

non-linear regression are then used later by the Estimator

to create memory assignments. In situations where Ginkgo

does not have enough data points, be it due to the need for

filtering (as discussed below) or lack of experimental history,

the Correlator uses the non-linear regression to interpolate

or extrapolate coordinates to calculate missing performance

values.

In addition to these methods, other statistical transforma-

tions are applied to create heuristic filters. The first filter

computes the coefficient of variation to filter out outliers.

(Outliers are common when a VM is thrashing from a “swap

storm”). The second filter is implemented by taking note of the

fact the performance should, for a given load level, decrease

monotonically with the decrease of memory assigned. If it

doesn’t happen, we throw out such measurements and we

also instruct the framework to stop reducing the memory

size. These filters were added out of experimental observation.

The analysis of the performance data sampled under corner

situations (e.g., low memory and moderate to high loads)

showed it to be unreliable, mainly due to the artifacts caused

by swapping.

Application performance might also be affected by factors

not related to memory, such as CPU contention, I/O contention

or cache interference between VMs running in the same

host. Since the Correlator constantly adjusts the model by

taking into account the latest measurements recorded by the

Collector, Ginkgo will detect and react to new conditions even

without knowing the cause of the degradation. We noticed

this in our own experiments when we deployed Ginkgo on a

new environment that had considerably worse storage perfor-

mance; the model was reused but later updated to reflect the

measurements resulting from the slower I/O path. As long as

the source of (non-memory-related) performance interference

is kept constant for each load level and memory assignment,

the framework will gracefully re-adjust itself.

IV. DETERMINING MEMORY ASSIGNMENTS

The Correlator’s performance model, the heart of this

framework, is continuously used by the Estimator , the brain

of this framework, to infer the memory needs of running

VMs. The Estimator , triggered at regular time intervals (or

proactively during SLA violations), processes the performance

model to make memory decisions by determining how much

memory each VM actually requires to deliver good application

performance under its current load. To do this, the Estimator

uses a Linear Program (LP) which takes as input the perfor-

mance model, a set of SLAs, and a configurable optimization

goal. For our evaluation we focused on maximizing perfor-

mance, however, the LP can also be configured to maximize

revenue, minimize cost or minimize memory consumption.

First, we list the different inputs of the LP:

1. A list of running virtual machine instances;

2. A list of all possible target memory size configurations;

3. A data matrix of normalized application performance for

each possible memory size configuration;

For the data matrix, each row represents a VM, and each

column a memory size. The value in each cell represents the

normalized performance a given VM is expected to achieve for

the given memory size. The LP uses normalized performance

values because different types of Tiers might use different

performance metrics (e.g., response time versus throughput),

and must be compared to make a decision. The 100% normal-

ization upper limit always represents the highest (summarized)

performance value for each load level. The 0% lower limit

represents a per-Tier cutoff. For example, response-time based

performance metrics have a specified value of 1000ms as the

0% cutoff, while throughput-based metrics have a cutoff at

zero. The LP defines a matrix of binary variables (output)

where each row corresponds to a VM instance and each

column corresponds to a possible memory assignment size.

The LP includes the following constraints:

1. Binary Matrix Constraint: Every VM instance should

receive at most one memory configuration size from the

matrix.

2. Constraint per Hypervisor: The sum of memory con-

figuration sizes assigned to all VM instances should not

exceed the total capacity of the hypervisor. The total

capacity may or may not include page coalescing activity.

3. Configuration Constraint: Do not assign more memory

than was configured for each VM instance at provisioning

time in the cloud.

Now that we have introduced the constraints and the inputs

used by the LP, we define the objective function. The Estimator

supports several desirable functions, including maximizing

performance and profit or minimizing memory consumption.

Certain objective functions may require additional constraints.

In this work we optimize for performance and this requires

an extra constraint to define the minimum performance each

VM should achieve in the form of an SLA. For an alternative

objective of profit maximization would similarly require that



the LP use an extra data matrix specifying revenue per

performance indicator unit for each VM.

In our experimental evaluation the Estimator maximizes

performance. After the LP has completed, the Orchestrator

component has the responsibility of applying the necessary

memory assignments to each hypervisor. For each running

VM, the Orchestrator first calculates the difference between

the current and the assigned amount of memory. Then, to

reach the desired memory allocation, the Orchestrator gradu-

ally sends fixed-size balloon inflate/deflate requests at regular

intervals. In our experiments, we used 32MB for the size of

the memory adjustment requests.

V. OVERCOMMITTING JAVA APPLICATION STACKS

Java-based application performance puts significant trust

into the JVM memory management system, which in turn

relies on the OS memory management sub-system. As long as

the OS allocates enough physical memory to hold the entire

JVM heap, the application will perform as expected. However,

this assumption may no longer hold true in an overcommitted

virtual environment. If the hypervisor takes away memory

from a VM, it is possible that part of the active JVM heap will

be swapped to disk. On the other hand, if the JVM is made

virtualization-aware, it can proactively reduce its heap size.

While doing so can increase the number of garbage collections

and decrease application performance [12], this degradation is

an order of magnitude smaller than the degradation caused by

swapping to disk when the JVM does not have enough physical

memory [13]. Without a virtualization-aware JVM capable of

re-adjusting its heap size during runtime, Ginkgo’s decisions

to overcommit memory were being based on the current JVM

heap size instead of attained performance as we intended.

To solve this problem, we used the Java Native Interface

(JNI) to implement a mechanism to dynamically adjust the

JVM heap size during runtime, called JavaBalloon. Using JNI

allowed us to deploy this without recompiling the JVM at

all. The JavaBalloon is loaded as a background thread when

the JVM starts. Similar to the balloon used by VMs, the

JavaBalloon thread waits for external requests to reduce or

increase the heap size. For decrease requests, the JavaBalloon

first allocates Java objects to remove them from the scope

of the garbage collector. Finally, the objects are pinned in

the heap and their corresponding native memory is released

to the guest kernel using the madvise(MADV DONTNEED)

system call. This makes the memory available for other usage

in the guest, allowing the normal hypervisor ballooning event

to reclaim that memory. Similarly, when a request to increase

the heap size arrives, the JavaBalloon reverses that process.

As we show in section VI, using the JavaBalloon Ginkgo

was able to achieve higher memory savings. Figure 1 depicts

Ginkgo’s integrated view, including its JavaBalloon support

inside one of the WebSphere virtual machines. Ginkgo syn-

chronizes between the VM balloon size and the JavaBalloon

size. When the Orchestrator needs to take memory from a VM

running a Java workload, it first inflates the JavaBalloon and

then the VM balloon by exactly the same size. On the reverse

side, the Orchestrator first deflates the VM balloon and then

deflates the JavaBalloon.

VI. GENERATING THE CORRELATION MODEL

Before we can evaluate the effectiveness of Ginkgo, we need

an understanding of the expected performance of each Tier.

A. Configuration

Our experiments use an 8-core IBM x3655 machine, with

32GB of memory and a hardware RAID-5 SATA disk array.

The VMs all have 2GB of memory and run Ubuntu 9. The

hypervisor runs KVM on Redhat Enterprise 6. KSM (page

de-duplication) is disabled. Our Workload Driver machine is

identical to the first machine and sits on the same 1GbE switch.

Ginkgo itself runs on this machine and uses the libvirt API to

deliver memory assignments.

Profiling is performed by running multiple VMs at different

loads while varying the memory size to record variations in

application performance. As Ginkgo makes each 32MB mem-

ory balloon adjustment, this data runs through the Correlator

to plot the graphs we see in this section. We generate profiles

using a highly-loaded non-overcommited hypervisor with 15

virtual machines: 30GB total, with 2GB available for the

hypervisor itself. To date, we have been able to run Ginkgo

experiments on larger hypervisors involving as many as 64

VMs. The experiments we show here use 15.

To generate load, we generate “load plans”, consisting of

different load levels at different time steps. In order to vary

the load, we first determine the highest and lowest loads than

an individual Stack can handle; then we take a subset of those

loads and determine the empirical guest CPU usage required

to achieve maximum performance with a single Stack; Finally,

we generate time steps by randomly choosing one of the loads

in the observed range and assigning it to a VM iteratively, until

one of two conditions happens: either we run out of VMs to

assign or we run out of available host CPU capacity, whichever

comes first. This procedure gives us sufficient variation over

time for testing.

B. Daytrader 2.0

We first profile Daytrader, a stock trading benchmark, on

WebSphere (WAS) v7 and DB2 v9, both with and without a

JavaBalloon-enabled WAS. WAS VMs receive two vCPUs and

DB2 VMs receive one. We set the JVM maximum heap size

to 1.8GB, just shy of the 2GB maximum for the VM, leaving

room for kernel caches. The hypervisor also has 2GB out of

32GB reserved for other daemon processes. The database is

really the only entity with variable free space as it is more I/O

intensive.

We profile each Daytrader Stack with loads up to 8 si-

multaneous request streams. In Figure 2, we show the WAS

memory-to-performance correlation results. We can see that

performance is degraded when the amount of memory as-

signed to the VM is near or less than the JVM heap size

(1.8GB), which is expected when we over-inflate the OS

balloon mechanism, giving the VM less memory than it needs



Fig. 2. WebSphere Application Server performance model. Virtually no memory is

released during profiling because of the unmalleable nature of the Java heap. Transient

swapping causes unpredictable performance variations.

Fig. 3. JavaBalloon-enabled WebSphere Application Server performance model.

to hold the entire JVM heap, hence forcing the guest OS

to swap. Ginkgo can avoid entering this situation because it

knows there is a significant drop in application performance

under a given memory size by checking with the Correlator .

Figure 3 shows results with a JavaBalloon-enabled Web-

Sphere, as described in section V. Here, we modify Ginkgo’s

profiling infrastructure to inflate the JavaBalloon before the

OS balloon mechanism is inflated. This allows us to steal as

much as 1GB of memory - almost 800MB more than what

would have been available without it. Notice that performance

remains stable, even with hundreds of megabytes of reduced

memory.

DB2 has the capability to self-adjust the I/O cache size

within the database, allowing it to release memory from its

internal cache by monitoring the amount of available memory

that was stolen during profiling. As a result, there is a clear,

smooth tradeoff between database transactions per second

performance and memory as shown in Figure 4.

C. SPECweb2009

We use the Banking version of SpecWeb 2009 [14] with

Apache - also with 2 vCPUs per VM. The SPECWeb backend

VMs, which perform database emulation, do not reside on

the main hypervisor and are not used in the evaluation of

Ginkgo. We generate profiles with loads ranging from 10 to

70 simultaneous request streams. For performance, we use the

Web Collector which calculates the time taken to process each

Fig. 4. DB2 database profiling performance. Performance-to-memory correlation has

a smooth curve due to DB2’s self-adjusting capabilities.

Fig. 5. SpecWeb Apache profiling performance.

URL. The model for Apache is illustrated in Figure 5, showing

the curve for each load. For this particular profile, Apache

operates best with 750MB of memory, but can still function

well with less depending on the incoming load. Apache will

simply spawn fewer processes to serve fewer requests and does

not suffer from the dynamic heap problems of Java. Also,

processes running inside the web server do not consume all

the physical memory, allowing the remaining memory to be

used by the guest’s Linux kernel to cache I/O operations, thus

increasing application performance.

VII. MEMORY EFFICIENCY GAINS

Here we evaluate Ginkgo’s overcommitment abilities. We

will use the offline-generated profiles (presented in previous

section) to estimate memory assignments online.

A. Configuration

First, the baseline overcommitment experiments consist of

a mix of virtual machines across all Tiers: 4 WebSphere VMs,

4 DB2 VMs and 7 Apache VMs running simultaneously.

After the baseline performance is established, we vary the

maximum allocatable hypervisor memory from 30GB all the

way down to 8GB with the same mix of VMs. Then we

see what the performance is when memory is taken away

at different granularities according to assignments determined

by the Ginkgo system. For every 2GB we remove from the

hypervisor, we allow load to vary to the VMs running on



Fig. 6. Comparison of different overcommit ratios achievable with Ginkgo. Enabling

the JavaBalloon at 12GB restores performance by increasing application malleability.

the hypervisor for over an hour before removing the next

2GB. Furthermore, to ensure that the extra memory is not

used for hypervisor-level page caching, we fork a host-level

2GB process to allocate, touch, and mlock() that memory into

DRAM so that it is not swapped and not available for use by

the hypervisor, allowing for faster experimentation.

By employing this experimental procedure we can show that

is possible to run the same number of VMs on a much smaller

(memory sized) hypervisor. In a situation where the memory

size is the only obstacle to achieve higher VM count (i.e.,

there is enough CPU and I/O bandwidth) it could be also said

that the hypervisor used on our experiments can effectively

run more VMs.

B. Results

Figure 6 shows a high-level comparison of the different

overcommit ratios and their corresponding performance degra-

dation achieved with Ginkgo. Configured Overcommit Ratio

is computed as maximum memory amount that Ginkgo is

allowing to be allocated in the experiment (e.g. 30GB, 28GB,

. . . , 8 GB) divided by the available memory in the hypervisor

(30GB). This ratio includes free space, page cache space, and

resident memory. RSS Overcommit ratio calculation is similar

to Configured ratio, except that guest OS free space is sub-

tracted from the total allocatable memory in the hypervisor. We

enabled the JavaBalloon only when the allocatable hypervisor

memory was equal or less than 12GB.

Figure 7 to 10 depict two groups of plots: the baseline plots

and the results from the “best” memory savings we were able

to achieve before one or more VMs began thrashing. If even

one VM thrashes, we stop the experiment.

Figure 7 shows the normalized, aggregate results of using

Ginkgo over the baseline configuration of the hypervisor. The

x-axis represents time steps, and each data point represents a

step of 10 minutes. For each time step, the left y-axis shows

the normalized values for performance and the right y-axis

shows the maximum memory allowed by Ginkgo. As we start

to take away memory, the system is still able to function

with as little as 14GB of memory while only suffering a 2

to 7% performance loss (shown by the line labeled Ginkgo-

Perf). The performance loss at each overcommit ratio can be

Fig. 7. Aggregate performance for 3 different overcommit levels: Ginkgo is set

to allocate a maximum of 30GB (baseline), 14GB (ginkgo), and 8GB (ginkgo with

JavaBalloon). The performance loss is small - no more than 7% across all timesteps.

Fig. 8. WebSphere performance with Ginkgo. JavaBalloon results are included,

showing more memory savings.

seen in Figure 6. In terms of VM memory configuration, this

constitutes a configured ratio of 2.14x. However, in terms of

actual memory used by the applications — the RSS Ratio

—, this constitutes a ratio of 1.31x. With the aid of the

JavaBalloon, the Configured Ratio increased to 3.75x, where

as the actual RSS Ratio increased 1.89x.

To examine the non-aggregated source of the small perfor-

mance loss, Figures 8, 9, and 10 illustrate a per-Application-

Tier record at the same 14GB memory gains level for a period

of over one hour. While we show only one VM instance

for each workload, each VM instance has a different varying

load behavior and all of them are able to maintain similar

performance indicators.

JavaBalloon Results. Figure 8 (Ginkgo-mem) shows how

the WebSphere Tier releases very little memory as determined

by our model. When we try to achieve memory gains past

14GB, these VMs simply thrashed, resulting in failures. Thus,

we perform an experiment in the same configuration except

that the 4 WebSphere VMs are made to be JavaBalloon-

enabled. As it can be seen in Figures 7 and 8 (JB-Ginkgo-

Perf), we were able to bring the maximum memory down to

as low as 8GB.

Also notice that the JavaBalloon-enabled Ginkgo (JB) line

even has slightly better aggregate performance at a higher

level of memory savings. We observed that this happens

because the non-JavaBalloon-enabled WebSphere experiences

small amounts of swap I/O since the Correlator is not able to

gain very much memory without the help of the JavaBalloon.



Fig. 9. Daytrader DB2 database performance.

Fig. 10. Apache performance under SPECWeb.

However, when it is enabled with the JavaBalloon, the JVM

is actively participating in the memory redistribution actions

of Ginkgo and can receive new memory in a timely fashion

as the load in the system changes. This reduces the amount

of performance loss by a small amount.

VIII. RELATED WORK

The problem of overcomitting virtualized resources has been

investigated from several angles. This work presents a com-

plete implementation and further evaluation of the introductory

work done in [15], describing the details of our performance

correlation model and decision mechanism. We also cover

multiple overcommit ratios, Application Stacks spread across

multiple VMs and introduce a new hypervisor-aware JVM.

Hypervisor-level enhancements to memory management have

been proposed to allow for a better understanding of how VMs

use their memory. Waldspurger [3] describes how VMWare

ESX Server estimates the guest working set during runtime.

The Geiger project [6] estimates the working set by inspecting

guest OS buffer cache behavior. Lu and Shen propose using

VM memory accesses to predict the VM miss rate for a given

memory size [7]. Magenheimer et al proposed the idea of

a hypervisor-based cache [16]. Zhao and Wang proposed a

scheme for VM memory balancing [8] by monitoring swap

space and memory accesses to maintain a LRU histogram.

All these works monitor system metrics to understand the

VMs memory demand, however, they are not able to estimate

application performance. In cloud-like environments, large-

scale multi-tier applications are expected to meet specific

SLAs, and performance is rigorously monitored by customers.

Additionally, by only monitoring system metrics, hypervisors

detect changes in memory demand only after memory pressure

has appeared, which might be too late to avoid noticeable

performance degradation. Ginkgo tries to go to the source

(the application): it starts from the assumption that application

performance is already being monitored in the cloud and

actively correlates that with memory size and SLAs.

Heo et al [17] takes an application-driven approach to

present a dynamic memory controller that uses feedback

control to dynamically adjust the allocation of CPU and

memory while maintaining service level objectives. When

using decision mechanisms based on feedback/resource con-

trol as presented in these works, changes in the memory

requirements are noticed when the application performance

starts degrading, and might take some time until the system

achieves the desired state. In contrast, Ginkgo tries to avoid

this situation by monitoring load and adjusting the system just

before the VMs start requiring more memory. Furthermore,

the evaluation was based on synthetic workloads and real

world traces, while Ginkgo deploys actual Application Stacks.

Other approaches [18] provide end-to-end QoS guarantees by

reserving CPU and I/O resources. Ginkgo is orthogonal to such

approaches and the Correlator’s performance models can be

used to consider also memory reservations in virtualized cloud

environments.

PRESS [19] presents a mechanism to predict resource

demand based on signal processing and statistical learning

algorithms. The efficiency of CPU prediction was evaluated

using representative benchmarks, however, memory prediction

was evaluated using real traces. In addition, for real workloads,

memory demand is not a simple value as it is for CPU demand.

As we show in our evaluation, the memory demand is a

function of the target performance. For example, over time, the

Linux kernel uses free memory for I/O cache. Thus, additional

memory might reduce the number of I/O operations and

improve application performance. While prediction algorithms

might not require advanced profiling and model calibration,

they are suggested to avoid estimation errors. Thus, Ginkgo

does not try to predict resource demand, and instead correlates

between application performance, incoming load and memory.

CRAMM [13] analyzes how traditional virtual memory

managers affect garbage-collected applications, showing how

the OS can force trashing if the entire heap does not fit

in physical memory. It solves the problem by introducing

a cooperative memory management system to predict and

adjust the heap size during runtime. While CRAMM does not

target virtual environments –ignoring the new level of memory

management added by the hypervisor–, it can still be integrated

into the guest VM to resize the heap when the balloon driver

is inflated or deflated. The effects of this approach would be

similar to those we obtained using the JavaBallon, however,

Ginkgo’s JavaBalloon does not require modifications on the

guest’s OS memory manager.



IX. CONCLUSIONS AND FUTURE WORK

Managing memory overcommitment is complex and must

be done carefully to avoid performance degradation. As we

show, performance metrics can be used to infer memory

needs and calculate efficient memory assignments. Our results

indicate that Ginkgo can allow the cloud provider to achieve

significant memory gains with very small performance degra-

dation. We also showed that by adapting the ballooning idea

for a JVM, we are able to dynamically change the JVM heap

size, allowing Java applications to be malleable.

When changes in cloud hardware or software happen, we

expect the Correlator’s model to deviate from new environ-

ment’s actual performance. In such situations, we plan to

stop overcommitment or migrate VMs to other hosts until the

new model converges to a steady-state. This will be done by

freezing the old model and by profiling with a newer model.

This would allow for Ginkgo to account for variations in both

the environment as well as in system resources other than

memory.

In this work, by using performance information, Ginkgo

can potentially become resource-agnostic. This can be done

by establishing correlations between performance and changes

in other resources (e.g., CPU or Network I/O), as long as the

hypervisor provides a method for dynamically controlling it.

We are interested in extending Ginkgo to allocate CPU and I/O

using multi-dimensional performance models and extending

the linear model to consider assignments for these resources.

Although our evaluation of Ginkgo chose to maximize

performance, in some scenarios we don’t need to achieve

maximum performance to pass quality of service goals. We

can define “acceptable” performance for each workload and

give the minimum amount of memory required to satisfy this

constraint. This definition for acceptable performance can be

provided by the customer or the provider. However, without

previous sampling and runtime learning, the cloud provider

would not be able to estimate the memory requirements needed

to host an Application Stack without noticeable violations. Al-

ternatively, providers might offer service category levels, such

as bronze, silver, and gold to avoid defining these values in

absolute terms. Based on expected profit or maximum allowed

resources, Ginkgo can be used to estimate what acceptable

performance values might be for each category. These values

can even be updated on a daily or weekly basis, according to

runtime/history measurements. By publishing these updated

values, the provider can give customers the opportunity to

upgrade/downgrade the QoS category assigned to a VM or

to further optimize their own workloads.
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