
10 Things Every Linux Programmer
Should Know

Linux Misconceptions in 30 Minutes

Muli Ben-Yehuda

mulix@mulix.org

IBM Haifa Research Labs

Linux Kernel Workshop, March 2004 – p.1/14



TOC

What this talk is about

User space vs. kernel space

Memory allocation

Processes vs. threads

NPTL - Native POSIX Threads Library

Optimization

Use the right abstraction layer for the job

Why coding style is important

Why you should always check for errors

The real cost of software development

Portability

Linux Kernel Workshop, March 2004 – p.2/14



What this talk is about

This talk is about common misconceptions, and things I
think every Linux programmer should know.

This talk is about learning from other people’s
experience and mistakes.

This talk is about how to write better software.

It’s about knowing how things work; Knowing how
things work lets us embrace and extend Linux.

This talk represents my opinions, and mine only. Feel free
to disagree. . .

Linux Kernel Workshop, March 2004 – p.3/14



User space vs. kernel space

A process is executing either in user space, or in kernel
space. Depending on which priviledges, address space
and address (EIP) a process is executing in, we say
that it is either in user space, or kernel space.

When executing in user space, a process has normal
priviledges and can and can’t do certain things. When
executing in kernel space, a process has every
priviledge, and can do anything.

Processes switch between user space and kernel
space using system calls.

Note that there are exceptions and mixed cases, such
as processes using iopl(). The biggest difference
between user space and kernel space is conceptual -
the programmer’s state of mind.

Linux Kernel Workshop, March 2004 – p.4/14



Memory Allocation

malloc is a library function, implemented in the standard
C library. It is not a system call.

malloc is implemented by two means in Linux. The first
is the brk() system call, which grows a process’s data
segment. The second is mapping /dev/zero to get
anonymous memory. In both cases, the end result is
the same.

The kernel allocates a virtual memory area for the
application, but does not allocate physical memory for
it. Only when the area is accessed physical memory is
allocated. This is known as “memory overcommit”, and
there are ways to disable it.

Do you really need your own malloc implementation?

Is malloc() really too slow for you?
Linux Kernel Workshop, March 2004 – p.5/14



Processes vs. threads

In Linux, processes and threads are almost the same.
The major difference is that threads share the same
virtual memory address space.

The low level interface to create threads is the clone()
system call. The higher level interface is
pthread_create().

Context switches between processes in Linux are fast.
Context switches between threads are even faster.

Which is better, multi process or multi threaded?
depends.

Linux threading is “1-1”, not “1-N” or “M-N”.

Linux threading libraries evolution: Linux Threads,
NGPT, NPTL. The library is part of gilbc, programmer
interface is POSIX pthreads.

Linux Kernel Workshop, March 2004 – p.6/14



NPTL - Native POSIX Threads Library

The New POSIX Threads Library, written by Ulrich Drepper
and Ingo Molnar of Red Hat, Inc.

Addresses shortcomings in the design and
implementation of Linux Threads.

Makes use of improved Linux kernel code and facilities.
In places, the changes were written specifically for
NPTL.

Uses the newly added Futexes (Fast User space
Mutexes).

Standard in kernel 2.5 and up, and back ported to 2.4
by Red Hat.

For more information,
http://people.redhat.com/drepper/nptl-design.pdf

Linux Kernel Workshop, March 2004 – p.7/14



Optimization

Knuth: "Premature optimization is the root of all evil".

Avoid the desire to optimize prematurely; concentrate
on getting it working first.

When it’s time to optimize, profile, profile, profile. The
desire to “search for the coin under the streetlight” is
strong, and must be resisted.

Optimize algorithms first, implementation second.

There’s (almost) no excuse for assembly.

Decide how fast is fast enough.

Optimize the system before components.

Never forget you are not running alone. There are
libraries, background processes, the kernel, the CPU
and the peripherals.

Linux Kernel Workshop, March 2004 – p.8/14



Use the right abstraction layer

Use the right language for the job.

Use the right tools for the job.

Should you be writing in a high level language, low level
language, object oriented, functional, logic
programming or procedural language? which can
express the problem domain best?

Balance between the desire to learn new tools and
techniques and the need to deliver on time and on
budget.

Make sure you have several hammers, but don’t disdain
a hammer just because you’ve already used it.

perl::open(), fopen(), open() or int 0x80?

Linux Kernel Workshop, March 2004 – p.9/14



Why coding style is important

Your code does not belong to you. Someone will be
maintaining and extending it long after you are gone.

Many eyes make all bugs shallow, but if no one can
understand your code, no one will look at it.

There’s plenty of room for personal expression even
when using someone else’s coding style.

Avoid Hungarian notation. Leave the compiler’s job to
the compiler.

Read Documentation/CodingStyle. Burn it if you want,
but follow it.

Linux Kernel Workshop, March 2004 – p.10/14



Why you should always check for errors

Anything that can go wrong, will. It’s your responsibility
to do the best job you can, and that includes handling
errors. It’s the thing you don’t expect to fail that will.

If there’s nothing to be done when an error occures,
your design is probably wrong. Nevertheless, leave a
comment for the next programmer to read the code.

The distance between an unchecked error and a
security hole is very short.

Always have sanity checks - you want to catch the error
as close as possible to where it occures.

Check printf() and close(). Be very wary of any string
function that doesn’t take an explicit length parameter.

Linux Kernel Workshop, March 2004 – p.11/14



The real cost of software development

Maintenance costs far more than development.

How often have people go on using that ten liner script
you wrote year ago? how often did it become
“production”? “mission critical”?

There’s nothing more permanent than the temporary.
Throw away code never is.

Always write code with an eye to the people who will
read it after you. A few years later it might be you, and
you’ll appreciate every comment you left.

Write for people, not compilers or processors.

Linux Kernel Workshop, March 2004 – p.12/14



Portability

Portability doesn’t cost you, within reason, and can
save you time, money and effort down the line.

Today’s platform is tomorrow’s garbage. Platforms and
operating environments change, and your code must
change with them.

Prefer cross platform toolkits and environments.

If you must do something platform-specific, abstract it
well in its own interchangeable component.

Avoid multiple portability layers - a good one is enough.

Don’t try to abstract that which is inherently different.

Linux Kernel Workshop, March 2004 – p.13/14



Questions, Answers, Comments?

What do you think every Linux programmer should know?

Linux Kernel Workshop, March 2004 – p.14/14


	TOC
	What this talk is about
	User space vs. kernel space
	Memory Allocation
	Processes vs. threads
	NPTL - Native POSIX Threads Library
	Optimization
	Use the right abstraction layer
	Why coding style is important
	Why you should always check for errors
	The real cost of software development
	Portability
	Questions, Answers, Comments?

