Nadav Har’'El* Abel Gordon*x Alex Landau*

Muli Ben-Yehuda>x® Avishay Traegerx Razya Ladelsky*

*|BM Research — Haifa
*Technion and Hypervisor Consulting

usenix

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Why (not) software-based I/O interposition in virtual environments?
" Pros
— Software Defined Networking
— File based images
— Live Migration
— Fault Tolerance
— Security
=Cons
— Scalability Limitations

—Performance Degradation
—Scalability Limitations

. —Performance Degradation

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

|/O Virtualization Models Interposable
N
~
D Bare-metal
8 /0 (no VM)
(4]
&
5 Y
4= Non-virtualizabl
o
ol
© 7
% Y Para-Virtual g
> Non-interposable /0 Unmodified Guest
= N
= n Emulated
g ® 110
CD :
>

Flexibility

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» The guest posts |/O requests in ring-queue (shared with the
hypervisor) and sends a request notification

* The hypervisor processes the requests and sends a reply
notification

Guest

/0 Request Rf};g /0 Reply
Notification Queue Notification

Hype\rzvisor*
/0 /o

|/O Device

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

How |I/O notifications are sent/received

*— CPU context switch (exits and entries)
Il 1/0 processing
[] Guest execution

o ------- > guest
VCPU \f ___________ N e T
Thread I/0 notification ! .
(Core X) | Guest-to-Host . ! hypervisor
1

'« |
l/O Process /0 I Complete I/O .
Thread Request ¢ Request hyperwsor

. (Core YY)

=1 thread per virtual CPU (VCPU)
» 1 thread per virtual /O device

[
»

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Is this model scalable with the number of guests and I/O bandwidth ?

VM2
VM1 :
O VMi
&€ Exit
Ie VM2
5
2 VM1 VM Exit
P VM2
LLI
| Core 1 Core 2 Core N || Core N+1
N— _

—

VCPU and I/O thread-based scheduling for all cores

Depends on the host thread scheduler but
the scheduler has no information about the
/O activity of the virtual devices....

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» Notifications cause exits (context switches) == overhead!

= Current trend is:

— Towards multi-core systems with an increasing numbers of
cores per socket (4->6->8->16->32) and guests per host

— Faster networks with expectation of lower latency and
higher bandwidth (1GbE->10GbE->40GbE->100GbE)

= /O virtualization is a CPU intensive task, and may require
more cycles than the available in a single core

We need a new “efficient” and “scalable”
Paravirtual I/0 model!

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

ELVIS: use fine-grained |/O scheduling and dedicate cores to
improve scalability and efficiency

C A
) VMi
£ ||| YMT)| Vi 1 thread per 1/0
IE > core handles
= M requests of many
-
S VM2 VM1 VMs
< VMi
LL]
/0
Core 1 Core 2 Core N Core)
V\ / \ j
" Y

thread-based scheduling fine-grained 1/0O scheduling

* Process queues based on the |/O activity

« Balance between throughput and latency

* No process/thread context switches for I/O
8 Exitless communication (next slide)

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

ELVIS: remove notifications overhead to further improve efficiency

Cmmmmm=o > guest
vcPU | ———IX AN X N—
Thread | 1/0 notificatipn i
(Core X) | Guest-to-Hgst hypervisor
Traditional °
. \./
Paravirtual |0 Process 1/0 I Complete I/O .
/0 Thread Request ¢ Request hypervisor
J[Core Y) R
(time)
S DO S »| guest
VCPU | oo s e
Thread \ I/O notification I'1/0 notification -
ELVIS (Core X) ‘\ Guest-to-Host ,' Host-to-Guest hyperwsor
\\ "
/O Process /O | 5' Complete I/O .
Thread Request Request hypervisor
(Core Y)
- >

(time)

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

ELVIS: Fine-grained I/O scheduling in a nutshell

» Single thread in a dedicated core monitors the activity of each

queue (VMs 1/O)

» Decide which queue should be processed and for how long

|->Q1 : throughput intensive

|—> Q2: latency sensitive

|->Q3: throughput intensive

10

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» Dedicate 1 I/O core per CPU socket
— Cores per socket continue to increase year by year

— More cores are required to virtualize more bandwidth at
lower latencies (network links continue to be improved)

— NUMA awareness: shared LLC cache and memory
controller, DDIO technology

= Deliver interrupts to the “corresponding” I/O core

— Interrupts are processed by |/O cores and do not disturb
the running the guests

— Improve locality

— Multi-port and SR-IOV adapters can dedicate interrupts
per port or virtual function

11

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» Implementation
—Based on KVM Hypervisor (Linux Kernel 3.1 / QEMU 0.14)
— With VHOST, in-kernel paravirtual /O framework

— Use ELI patches to enable exitless replies and to improve
hardware-assisted non-interposable I/O (SR-IOV)

» Experimental Setup

—IBM System x3550 M4, dual socket 8 cores per socket Intel
Xeon E2660 2.2GHz (SandyBridge)

— Dual port 10GbE Intel x520 SRIOV NIC

— 2 Identical servers: one used to host the VMs and the other
used to generate load on bare-metal

12

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» Repeated experiments using 1 to 14 UP VMs
— 1x10GbE when running up-to 7 VMs
—2x10GbE when running more than 7 VMs

» Compared ELVIS against 3 other configurations

* No interposition
— Each VM runs on a dedicated core and has a SR-IOV VF
assigned using ELI

— The closer ELVIS is to this configuration, the smaller the
overhead is (used to evaluate ELVIS efficiency)

13

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

* N=number of VMs (1 to 14)
= Used N+1 cores (N< 7) or N+2 cores (N>7)
— This is the resource overhead for I/O interposition

=ELVIS
— 1 dedicated core per VCPU (VM)
—1 core (N<=7) or (N>7) 2 cores dedicated for |/O

= Baseline

—N+1 cores (N = 7) or N+2 cores (N>7) to run VCPU and I/O
threads (no thread affinity)

= Baseline+Affinity

— Baseline but dedicate 1 core per VCPU and pin I/O threads
. to dedicated I/O cores

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Throughput (bps)

Netperf
20G T T | T I T T ! !
166 | — Nointerposition Scaled perfectly
—+— Baseline .
14G Baseline-+affinity 1 core managed to handle 1/O
12G for 7 VMs (Cores)
10G *Maximum throughput
8G -Coalesced more interrupts
jg than the SR-IOV device
p (4K-11K vs. 30K ints/sec)
0G
~ Y —~ = Y ~
1x10Gb port | 2x10Gb port
ELVIS: 1 core dedicated for /O and 1 ELVIS: 2 cores dedicated for 1/O and 1
dedicated core per VM (N+1 total) dedicated core per VM (N+2 total)
Baseline: N+1 cores (to handle I/O and to Baseline: N+2 cores (to handle 1/O and to
run the VMs) run the VMs)

No Interposition: N cores to run the VMs No Interposition: N cores to run the VMs

15

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

16

‘Baseline —+— _
ELVIS |
, NO int?rpQSition ——

100

80

Avg. latency (microsec)

2 13 14

1 2 3 4 5 6 7 8 9 10111

Number of VMs

Latency slightly increased with more VMs

Better than No Interposition in some cases because
enabling SR-I0OV in the NIC increases latency by 22%
(ELVIS disables SR-IOV)

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Memcached - 90% get, 10% set, 32 concurrent requests per VM
1KB value size, 64B key size e ELVIS

17

—e— No interposition

—+— Baseline
Memcached —a— Baseline+affinity
1200K
1000K
800K
600K

400K

Transactions per second

200K —"
———a— ‘
OK I I | I]]
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of VMs

|/O core saturated after 3 VMs

*ELVIS was up to 30% slower than No interposition
when the I/O core was not saturated, but was always
30%-115% better than Baseline

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

= Paravirtual 1/0
= Polling

» Spatial division of cores / core dedication

= Exitless Interrupts

We extended many of these ideas and integrated them with a
fine-grained 1/O scheduling to build a new Efficient and
Scalable paravirtual 1/0 System (ELVIS)

18

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

» Most data centers and cloud providers use paravirtual 1/0
(required to enable many useful virtualization features)

» Current trend towards multi-core systems and towards faster
networks makes paravirtual I/O inefficient and not scalable

» ELVIS presents a new efficient and scalable I/O virtualization
system that removes paravirtual I/O deficiencies

= Future Work
— Improve fine-grained 1/0O scheduling to consider VM’s SLAs

— Dynamically allocate or release I/O cores based on the
system load and guest’s workloads

— Core Specialization: 1/0O core <> VCPU cores

19

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

20

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

21

Backup

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Mix of throughput intensive and latency sensitive VMs

*Throughput intensive: N VMs run Netperf TCP Stream 64Bytes (STREAM)

Latency sensitive: 7-N VMs run Netperf UDP Request Response (RR)

‘N=11t06
@ 166G 180 l l
2 —%— ELVIS
= 14Gr s 160 ' emae No interposition
E 192G | % 140 | —4— Bailsellne i
? g | S 120 ¢
P 086 | x 197
e U e 80 r
206G | 3 60k
3 -
£ 046 ¢ S 4|
3 0.2G r — 20 |
£ oc L= 0
}_
STREAM 1 2 3 4 5 6 STREAM 1 2 3 4 6
RR 6 5 4 3 2 1 RR 6 5 4 3 1

22

Managed to balance between throughput intensive
and latency sensitive workloads

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

NUMA awareness
Netperf — TCP Stream 64Bytes

23

10G
9G r
8G r
G r
6G -
oG
4G -
3G r
2G ¢
1G
0G i i i i i

— Aligned
—— Unaligned

Throughput (bps)

Number of VMs

*Aligned: improves performance by 30%-40%
(/0O thread runs in the same socket)

‘Unaligned: saturated after 5-6VMs
(/O thread runs in a different socket)

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Filebench — block 1/O interposition based on host RAM disk
4x4KB random writes, 4x4KB random reads per VM

24

operations per second

Avg. latency (millisec)

350K

300K |
250K r
200K r
150K r
100K |
50K r

oK

1

09 r
08 r
0.7
06 r
05 r

04

0.3 I
02 |
01 L

0

—— ELVIS
—— Baseline
—— B:aselline-:l-affi:nity:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Baseline —4—

ELVIS —%—

Latency remains
constant

*Throughput increases
linearly

1.2 3 4 5 6 7 8 9 1011 12 13 14

Numbers of VMs

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

I/O becomes Exitless

Exits/s 1 VM

Baseline

142K

ELVIS

<800

Exits/s per VM (7 VMs)

Exits/s 1 VM

53K

109K

<800

<800

Exits/s per VM (7 VMs)

Exits/s 1 VM

39K

146K

<800

<800

Exits/s per VM (7 VMs)

Exits/s 1 VM

60K

56K

<800

<800

Baseline: exits/VM
decreased as the
number of VMs
Increased
(batching/coalescing
effect)

ELVIS: removed
most of the exits!

Exits/s per VM (7 VMs)

35K

<800

25

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Fine-grained I/O scheduling and Exitless requests/replies

Netperf — TCP Stream 64Bytes

26

3.5 - —
- —3— ELVIS
> 3 L Fine-grained
= —+— Baseline
o —#— Baseline+Affinity
3 2.9 o | 1
t=
o 2 T
o)
N
T 1.5 |
=
3 1
—__.— ﬂ
0.5 '
1 2 3 4 S 6 7

Number of VMs

*Fine-grained 1/O scheduling is required to improve scalability

Exitless notifications are required to improve per VM
performance

Efficient and Scalable Paravirtual I/O System — USENIX ATC’13

Apache serving 4KB static pages

27

aggregate requests/s

Apache
80K

70K r
60K

SOK I e Elvis
40K F = Nointerposition

—#— Baseline
30K+
20K
10K r = ———
OK i 1 i 1 i 1 i 1 i
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Numbers of VMs

*Scaled perfectly while the remove machine was not saturated
1 core managed to handle I/O for 7 VMs (cores)

*Maximum throughput

